Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters

Document Type
Year range
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.27.21268309

ABSTRACT

The COVID-19 epidemic in Brazil was driven mainly by the spread of Gamma (P.1), a locally emerged Variant of Concern (VOC) that was first detected in early January 2021. This variant was estimated to be responsible for more than 96% of cases reported between January and June 2021, being associated with increased transmissibility and disease severity, a reduction in neutralization antibodies and effectiveness of treatments or vaccines, as well as diagnostic detection failure. Here we show that, following several importations predominantly from the USA, the Delta variant rapidly replaced Gamma after July 2021. However, in contrast to what was seen in other countries, the rapid spread of Delta did not lead to a large increase in the number of cases and deaths reported in Brazil. We suggest that this was likely due to the relatively successful early vaccination campaign coupled with natural immunity acquired following prior infection with Gamma. Our data reinforces reports of the increased transmissibility of the Delta variant and, considering the increasing concern due to the recently identified Omicron variant, argues for the necessity to strengthen genomic monitoring on a national level to quickly detect and curb the emergence and spread of other VOCs that might threaten global health.


Subject(s)
COVID-19 , Death
3.
Marta Giovanetti; Svetoslav Nanev Slavov; Vagner Fonseca; Eduan Wilkinson; Houriiyah Tegally; Jose Patane; Vincent Louis Viala; Emmanuel James San; Evandra Strazza Rodrigues; Elaine Vieira Santos; Flavia Aburjaile; Joilson Xavier; Hegger Fritsch; Talita Emile Ribeiro Adelino; Felicidade Pereira; Arabela Leal; Felipe Campos de Melo Iani; Glauco de Carvalho Pereira; Cynthia Vazquez; Gladys Mercedes Estigarribia Sanabria; Elaine Cristina de Oliveira; Luiz Demarchi; Julio Croda; Rafael Dos Santos Bezerra Sr.; Loyze Paola Oliveira de Lima; Antonio Jorge Martins; Claudia Renata dos Santos Barros; Elaine Cristina Marqueze; Jardelina de Souza Todao Bernardino; Debora Botequio Moretti; Ricardo Augusto Brassaloti; Raquel de Lello Rocha Campos Cassano; Pilar Drummond Sampaio Correa Mariani; Joao Paulo Kitajima; Bibiana Santos; Rodrigo Proto Siqueira; Vlademir Vicente Cantarelli; Stephane Tosta; Vanessa Brandao Nardy; Luciana Reboredo de Oliveira da Silva; Marcela Kelly Astete Gomez; Jaqueline Gomes Lima; Adriana Aparecida Ribeiro; Natalia Rocha Guimaraes; Luiz Takao Watanabe; Luana Barbosa Da Silva; Raquel da Silva Ferreira; Mara Patricia F. da Penha; Maria Jose Ortega; Andrea Gomez de la Fuente; Shirley Villalba; Juan Torales; Maria Liz Gamarra; Carolina Aquino; Gloria Patricia Martinez Figueredo; Wellington Santos Fava; Ana Rita C. Motta Castro; James Venturini; Sandra Maria do Vale Leone de Oliveira; Crhistinne Cavalheiro Maymone Goncalves; Maria do Carmo Debur Rossa; Guilherme Nardi Becker; Mayra Marinho Presibella; Nelson Quallio Marques; Irina Nastassja Riediger; Sonia Raboni; Gabriela Mattoso; Allan D. Cataneo; Camila Zanluca; Claudia N Duarte dos Santos; Patricia Akemi Assato; Felipe Allan da Silva da Costa; Mirele Daiana Poleti; Jessika Cristina Chagas Lesbon; Elisangela Chicaroni Mattos; Cecilia Artico Banho; Livia S Sacchetto; Marilia Mazzi Moraes; Rejane Maria Tommasini Grotto; Jayme A. Souza-Neto; Mauricio L Nogueira; Heidge Fukumasu; Luiz Lehmann Coutinho; Rodrigo Tocantins Calado; Raul Machado Neto; Ana Maria Bispo de Filippis; Rivaldo Venancio da Cunha; Carla Freitas; Cassio Roberto Leonel Peterka; Cassia de Fatima Rangel Fernandes; Wildo Navegantes; Rodrigo Fabiano do Carmo Said; Maria Almiron; Carlos F Campelo de A e Melo; Jose Lourenco; Tulio de Oliveira; Edward C Holmes; Ricardo Haddad; Sandra Coccuzzo Sampaio; Maria Carolina Elias; Simone Kashima; Luiz Carlos Junior Alcantara; Dimas Tadeu Covas.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.07.21264644

ABSTRACT

Brazil has experienced some of the highest numbers of COVID-19 infections and deaths globally and made Latin America a pandemic epicenter from May 2021. Although SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, important gaps remain in our understanding of local virus transmission dynamics. Here, we describe the genomic epidemiology of SARS-CoV-2 using near-full genomes sampled from 27 Brazilian states and an adjacent country - Paraguay. We show that the early stage of the pandemic in Brazil was characterised by the co-circulation of multiple viral lineages, linked to multiple importations predominantly from Europe, and subsequently characterized by large local transmission clusters. As the epidemic progressed, the absence of effective restriction measures led to the local emergence and international spread of Variants of Concern (VOC) and under monitoring (VUM), including the Gamma (P.1) and Zeta (P.2) variants. In addition, we provide a preliminary genomic overview of the epidemic in Paraguay, showing evidence of importation from Brazil. These data reinforce the need for the implementation of widespread genomic surveillance in South America as a toolkit for pandemic monitoring and providing a means to follow the real-time spread of emerging SARS-CoV-2 variants with possible implications for public health and immunization strategies.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.23.21264018

ABSTRACT

The Beta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in South Africa in late 2020 and rapidly became the dominant variant, causing over 95% of infections in the country during and after the second epidemic wave. Here we show rapid replacement of the Beta variant by the Delta variant, a highly transmissible variant of concern (VOC) that emerged in India and subsequently spread around the world. The Delta variant was imported to South Africa primarily from India, spread rapidly in large monophyletic clusters to all provinces, and became dominant within three months of introduction. This was associated with a resurgence in community transmission, leading to a third wave which was associated with a high number of deaths. We estimated a growth advantage for the Delta variant in South Africa of 0.089 (95% confidence interval [CI] 0.084-0.093) per day which corresponds to a transmission advantage of 46% (95% CI 44-48) compared to the Beta variant. These data provide additional support for the increased transmissibility of the Delta variant relative to other VOC and highlight how dynamic shifts in the distribution of variants contribute to the ongoing public health threat.


Subject(s)
Coronavirus Infections
5.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.12.21257080

ABSTRACT

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.01.21254495

ABSTRACT

The international scientific community from different areas of knowledge has made efforts to provide information and methods that contribute to the adoption of the most appropriate measures to curb the spread of the COVID-19 disease. In particular, the data analysis community has been very active in publishing a large number of papers. A good part of them is related to the prediction of epidemic variables (number of cases and deaths) in different time horizons. To solve the problem of the prediction of COVID-19, an important place is occupied by the sigmoidal growth functions, as they have often been used successfully in previous epidemic outbreaks. The objective of this work was to investigate, on a statistical basis, the ability of classical growth functions to model the data from the COVID-19 pandemic. But for that, it was necessary to establish a clear classification of the 5 types of problems that can be faced with data analysis techniques in this specific context and to define a methodology based on quantitative metrics to measure the performance in solving these different types of problems. The basic concept used was that of an epidemic wave consisting of an initial-increasing and a final-decreasing phase. A classification of the COVID-19 waves in 4 types was done based on mining data from all available countries. Thus, it was possible to determine the resolvability of each type of problem depending on the stage of the epidemic wave. The biggest conclusion was the impossibility of solving the long-term forecasting problems (problem 5 - to estimate the total value of an epidemic wave) with data from the first phase only. Using this theoretical-methodological framework, we evaluated, using metrics specifically designed for these types of problems, the performance of 3 classic growth functions: Logistics, Gompertz and Richards (a generalization of the previous two) in 2 types of problems: (1) Description of the trajectory of the epidemic and (2) Prediction of the total numbers of cases and deaths. We used data from 10 countries, 7 of them with more than 100 daily deaths on the peak day. The results show a generalized underperformance of the logistic function in all aspects and place the Gompertz function as the best cost-benefit alternative, as it has performance comparable to the Richards function, but it has one less parameter to be adjusted, in the process of regression of the model to the observed data.


Subject(s)
COVID-19 , Death
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.30.21254591

ABSTRACT

Sao Paulo State, the most populous area in Brazil, currently experiences a second wave of the COVID-19 pandemic which overwhelmed the healthcare system. Recently, due to the paucity of SARS-CoV-2 complete genome sequences, we established a Network for Pandemic Alert of Emerging SARS-CoV-2 Variants to rapidly understand the spread of SARS-CoV-2 and monitor in nearly real-time the circulating SARS-CoV-2 variants into the state. Through full genome analysis of 217 SARS-CoV-2 complete genome sequences obtained from the largest regional health departments we were able to identify the co-circulation of multiple SARS-CoV-2 lineages such as i) B.1.1 (0.92%), ii) B.1.1.1 (0.46%), iii) B.1.1.28 (25.34%), iv) B.1.1.7 (5.99%), v) B.1.566 (1.84%), vi) P.1 (64.05%), and P.2 (0.92%). Further our analysis allowed the detection, for the first time in Brazil of the South African variant of concern (VOC), the B.1.351 (501Y.V2) (0.46%). The identified lineage was characterized by the presence of the following mutations: ORF1ab: T265I, R724K, S1612L, K1655N, K3353R, SGF 3675_F3677del, P4715L, E5585D; Spike: D80A, D215G, L242_L244del, A262D, K417N, E484K, N501Y, D614G, A701V, C1247F; ORF3a: Q57H, S171L, E: P71L; ORF7b: Y10F, N: T205I; ORF14: L52F. Origin of the most recent common ancestor of this genomic variant was inferred to be between middle October to late December 2020. Analysis of generated sequences demonstrated the predominance of the P.1 lineage and allowed the early detection of the South African strain for the first time in Brazil. Our findings highlight the importance to increase active monitoring to ensure the rapid detection of new SARS-CoV-2 variants with a potential impact in pandemic control and vaccination strategies.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.25.21252490

ABSTRACT

Tracking the spread of SARS-CoV-2 variants of concern is crucial to inform public health efforts and control the ongoing pandemic. Here, we report genetic evidence for circulation of the P.1 variant in Northeast Brazil. We advocate for increased active surveillance to ensure adequate control of this variant throughout the country. Article Summary Line Active genomic surveillance of SARS- CoV-2 suspected cases from recent travelers reveals the circulation of the P1 variant of concern in Bahia state, Northeast Brazil.

9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248640

ABSTRACT

Continued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.

10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.16.20248355

ABSTRACT

We investigated SARS-CoV-2 transmission dynamics in Italy, one of the countries hit hardest by the pandemic, using phylodynamic analysis of viral genetic and epidemiological data. We observed the co-circulation of at least 13 different SARS-CoV-2 lineages over time, which were linked to multiple importations and characterized by large transmission clusters concomitant with a high number of infections. Subsequent implementation of a three-phase nationwide lockdown strategy greatly reduced infection numbers and hospitalizations. Yet we present evidence of sustained viral spread among sporadic clusters acting as "hidden reservoirs" during summer 2020. Mathematical modelling shows that increased mobility among residents eventually catalyzed the coalescence of such clusters, thus driving up the number of infections and initiating a new epidemic wave. Our results suggest that the efficacy of public health interventions is, ultimately, limited by the size and structure of epidemic reservoirs, which may warrant prioritization during vaccine deployment.

11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.15.20231993

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in both humans and wide range of animal species. Its rapid spread globally and devasting effects have resulted into a major public health emergency prompting the need for methodological interventions to understand and control its spread. In particular, The ability to effectively retrace its transmission pathways in outbreaks remains a major challenge. This is further exacerbated by our limited understanding of its underlying evolutionary mechanism. Using NGS whole-genome data, we determined whether inter- and intra-host diversity coupled with bottleneck analysis can retrace the pathway of viral transmission in two epidemiologically well characterised nosocomial outbreaks in healthcare settings supported by phylogenetic analysis. Additionally, we assessed the mutational landscape, selection pressure and diversity of the identified variants. Our findings showed evidence of intrahost variant transmission and evolution of SARS-CoV-2 after infection These observations were consistent with the results from the bottleneck analysis suggesting that certain intrahost variants in this study could have been transmitted to recipients. In both outbreaks, we observed iSNVs and SNVs shared by putative source-recipients pairs. Majority of the observed iSNVs were positioned in the S and ORF1ab region. AG, CT and TC nucleotide changes were enriched across SARS-COV-2 genome. Moreover, SARS-COV-2 genome had limited diversity in some loci while being highly conserved in others. Overall, Our findings show that the synergistic effect of combining withinhost diversity and bottleneck estimations greatly enhances resolution of transmission events in Sars-Cov-2 outbreaks. They also provide insight into the genome diversity suggesting purifying selection may be involved in the transmission. Together these results will help in developing strategies to elucidate transmission events and curtail the spread of Sars-Cov-2

12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.10.144212

ABSTRACT

The COVID-19 pandemic spread very fast around the world. A few days after the first detected case in South Africa, an infection started a large hospital outbreak in Durban, KwaZulu-Natal. Phylogenetic analysis of SARS-CoV-2 genomes can be used to trace the path of transmission within a hospital. It can also identify the source of the outbreak and provide lessons to improve infection prevention and control strategies. In this manuscript, we outline the obstacles we encountered in order to genotype SARS-CoV-2 in real-time during an urgent outbreak investigation. In this process, we encountered problems with the length of the original genotyping protocol, reagent stockout and sample degradation and storage. However, we managed to set up three different library preparation methods for sequencing in Illumina. We also managed to decrease the hands on library preparation time from twelve to three hours, which allowed us to complete the outbreak investigation in just a few weeks. We also fine-tuned a simple bioinformatics workflow for the assembly of high-quality genomes in real-time. In order to allow other laboratories to learn from our experience, we released all of the library preparation and bioinformatics protocols publicly and distributed them to other laboratories of the South African Network for Genomics Surveillance (SANGS) consortium.


Subject(s)
COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.29.20116376

ABSTRACT

Background: The emergence of a novel coronavirus, SARS-CoV-2, in December 2019, progressed to become a world pandemic in a few months and reached South Africa at the beginning of March. To investigate introduction and understand the early transmission dynamics of the virus, we formed the South African Network for Genomics Surveillance of COVID (SANGS_COVID), a network of ten government and university laboratories. Here, we present the first results of this effort, which is a molecular epidemiological study of the first twenty-one SARS-CoV-2 whole genomes sampled in the first port of entry, KwaZulu-Natal (KZN), during the first month of the epidemic. By combining this with calculations of the effective reproduction number (R), we aim to shed light on the patterns of infections that define the epidemic in South Africa. Methods: R was calculated using positive cases and deaths from reports provided by the four major provinces. Molecular epidemiology investigation involved sequencing viral genomes from patients in KZN using ARCTIC protocols and assembling whole genomes using meticulous alignment methods. Phylogenetic analysis was performed using maximum likelihood (ML) and Bayesian trees, lineage classification and molecular clock calculations. Findings: The epidemic in South Africa has been very heterogeneous. Two of the largest provinces, Gauteng, home of the two large metropolis Johannesburg and Pretoria, and KwaZulu-Natal, home of the third largest city in the country Durban, had a slow growth rate on the number of detected cases. Whereas, Western Cape, home of Cape Town, and the Eastern Cape provinces the epidemic is spreading fast. Our estimates of transmission potential for South Africa suggest a decreasing transmission potential towards R=1 since the first cases and deaths have been reported. However, between 06 May and 18 May 2020, we estimate that R was on average 1.39 (1.04 - 2.15, 95% CI). We also demonstrate that early transmission in KZN, and most probably in all main regions of SA, was associated with multiple international introductions and dominated by lineages B1 and B. The study also provides evidence for locally acquired infections in a hospital in Durban within the first month of the epidemic, which inflated early mortality in KZN. Interpretation: This first report of SANGS_COVID consortium focuses on understanding the epidemic heterogeneity and introduction of SARS-CoV-2 strains in the first month of the epidemic in South Africa. The early introduction of SARS-CoV-2 in KZN included caused a localized outbreak in a hospital, provides potential explanations for the initially high death rates in the province. The current high rate of transmission of COVID-19 in the Western Cape and Eastern Cape highlights the crucial need to strength local genomic surveillance in South Africa.


Subject(s)
COVID-19 , Death
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.05.20091611

ABSTRACT

The recent emergence of a previously unknown coronavirus (SARS-CoV-2), first confirmed in the city of Wuhan in China in December 2019, has caused serious public health and economic issues due to its rapid dissemination worldwide. Although 61,888 confirmed cases had been reported in Brazil by 28 April 2020, little was known about the SARS-CoV-2 epidemic in the country. To better understand the recent epidemic in the second most populous state in southeast Brazil (Minas Gerais, MG), we looked at existing epidemiological data from 3 states and sequenced 40 complete genomes from MG cases using Nanopore. We found evidence of multiple independent introductions from outside MG, both from genome analyses and the overly dispersed distribution of reported cases and deaths. Epidemiological estimates of the reproductive number using different data sources and theoretical assumptions all suggest a reduction in transmission potential since the first reported case, but potential for sustained transmission in the near future. The estimated date of introduction in Brazil was consistent with epidemiological data from the first case of a returning-traveler from Lombardia, Italy. These findings highlight the unique reality of MGs epidemic and reinforce the need for real-time and continued genomic surveillance strategies as a way of understanding and therefore preparing against the epidemic spread of emerging viral pathogens.


Subject(s)
COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.01.31.928796

ABSTRACT

SummaryGenome Detective is a web-based, user-friendly software application to quickly and accurately assemble all known virus genomes from next generation sequencing datasets. This application allows the identification of phylogenetic clusters and genotypes from assembled genomes in FASTA format. Since its release in 2019, we have produced a number of typing tools for emergent viruses that have caused large outbreaks, such as Zika and Yellow Fever Virus in Brazil. Here, we present The Genome Detective Coronavirus Typing Tool that can accurately identify novel coronavirus (2019-nCoV) sequences isolated in China and around the world. The tool can accept up to 2,000 sequences per submission and the analysis of a new whole genome sequence will take approximately one minute. The tool has been tested and validated with hundreds of whole genomes from ten coronavirus species, and correctly classified all of the SARS-related coronavirus (SARSr-CoV) and all of the available public data for 2019-nCoV. The tool also allows tracking of new viral mutations as the outbreak expands globally, which may help to accelerate the development of novel diagnostics, drugs and vaccines. AvailabilityAvailable online: https://www.genomedetective.com/app/typingtool/cov * Contactkoen@emweb.be and deoliveira@ukzn.ac.za Supplementary informationSupplementary data is available online.

SELECTION OF CITATIONS
SEARCH DETAIL